Name: \qquad
Instructor: \qquad
Math 10550, Exam 2
October 16, 2014.

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice__	
11.	
12.	
13.	\square
14.	
Total	

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (6 pts.) A cylinder has constant height $h=2 \mathrm{~m}$, but the radius is changing. If the volume is increasing at a rate of $16 \mathrm{~m}^{3} / \mathrm{sec}$., how fast is the radius changing when the radius is 4 m .
(a) $8 \mathrm{~m} / \mathrm{sec}$.
(b) $1 \mathrm{~m} / \mathrm{sec}$.
(c) $\frac{1}{\pi} \mathrm{~m} / \mathrm{sec}$.
(d) $4 \mathrm{~m} / \mathrm{sec}$.
(e) $\frac{4}{\pi} \mathrm{~m} / \mathrm{sec}$.
2.(6 pts .) A beetle is moving along a straight line, with position given by $s(t)=\sin (t)+$ $\cos (t)$. How much distance does it travel from $t=0$ to $t=\pi / 3$?
(a) $\frac{\sqrt{3}-1}{2}$
(b) $\sqrt{2}-1$
(c) $2 \sqrt{2}-\frac{3}{2}-\frac{\sqrt{3}}{2}$
(d) $\frac{\sqrt{3}}{2}$
(e) None of the above.

Name: \qquad
Instructor: \qquad
3. (6 pts.) Find the linearization $L(x)$ of the function $f(x)=\tan (x)$ at $\frac{\pi}{4}$.
(a) $1-\frac{\pi}{\sqrt{2}}+\sqrt{2} x$
(b) $1-\frac{\pi}{8}+\frac{x}{2}$
(c) $1-\frac{\pi}{2}+2 x$
(d) $1+\frac{\pi}{2}+2 x$
(e) Does not exist; $\tan (x)$ is not differentiable at $\frac{\pi}{4}$
4. (6 pts .) Use linear approximation of $f(x)=\sqrt{3+x}$ at $a=1$ to estimate $\sqrt{3.6}$.
(a) 1.9
(b) 1.8
(c) 2.1
(d) 2.2
(e) 3.8

Name: \qquad
Instructor: \qquad
5. (6 pts .) Consider the function $f(x)=x^{1 / 3}(x+1)^{2}$. Which of the following is a complete list of the critical points of f ?
(a) $1,1 / 7,0$
(b) $-1 / 4,0,1$
(c) $-1,0$
(d) $0,-1 / 7,-1$
(e) $\quad-1,-1 / 7$
6. (6 pts.) Let

$$
f(\theta)=\frac{\theta^{2}}{4}+\cos (\theta) \quad \text { where } \quad 0 \leq \theta \leq \pi
$$

Which of the following statements is true about the graph of f ?
(a) It is concave up on the interval $\left(0, \frac{\pi}{3}\right)$ and concave down on the interval $\left(\frac{\pi}{3}, \pi\right)$.
(b) It is concave up on the interval $(0, \pi)$.
(c) It is concave up on the interval $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$ and concave down on the intervals $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{2 \pi}{3}, \pi\right)$.
(d) It is concave up on the intervals $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{2 \pi}{3}, \pi\right)$ and concave down on the interval $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$.
(e) It is concave up on the interval $\left(\frac{\pi}{3}, \pi\right)$ and concave down on the interval $\left(0, \frac{\pi}{3}\right)$.

Name: \qquad
Instructor: \qquad
7. (6 pts.) Consider the function $f(x)=x^{3}-3 x^{2}-9 x+2014$. Which of the following statements is true?
(a) $\quad f$ has a local maximum at $x=-1$, a local minimum at $x=3$, a point of inflection at $x=1$.
(b) $\quad f$ has a local maximum at $x=1$, a local minimum at $x=-1$, a point of inflection at $x=3$.
(c) $\quad f$ has a local maximum at $x=3$, a local minimum at $x=-1$, a point of inflection at $x=1$.
(d) $\quad f$ has a local maximum at $x=-1$, a local minimum at $x=1$, a point of inflection at $x=3$.
(e) $\quad f$ has a local maximum at $x=3$, a local minimum at $x=1$, a point of inflection at $x=-1$.
8.(6 pts.) Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x^{2}+1}}{x-4}$.
(a) 2
(b) -4
(c) $\sqrt{2}$
(d) $-\sqrt{2}$
(e) -2

Name: \qquad
Instructor: \qquad
9. (6 pts.) The derivative and second derivative of the function $f(x)$ are given by

$$
f^{\prime}(x)=\frac{(x-2)(x-3)}{x} \quad \text { and } \quad f^{\prime \prime}(x)=1-\frac{6}{x^{2}} .
$$

On which of the following intervals is $f(x)$ it both decreasing and concave up?
(a) $(\sqrt{6}, 3)$
(b) $(0,2)$
(c) $(-\sqrt{6}, 0)$
(d) $(3, \infty)$
(e) It is impossible for a function to be decreasing and concave up on an interval.
10. (6 pts.) What is the minimum value of the function $f(t)=2 x^{3}-3 x^{2}-12 t+6$ on the interval $[-2,3]$?
(a) 13
(b) -14
(c) -3
(d) $\quad-7$
(e) 2

Name: \qquad
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11. (12 pts.) A ladder 8 ft long leans against a vertical wall. The top of the ladder is pulled up from the floor at a rate of $2 \mathrm{ft} /$ second. Let θ be the angle between the ladder and the ground. Find $\frac{d \theta}{d t}$ when the bottom of the ladder is 4 ft away from the wall.

Name:
Instructor:
12.(12 pts.) Show that the equation

$$
x^{7}+2 x^{5}+5 x+4=0
$$

has one and exactly one real solution. Identify the theorem(s) you are using.

Name: \qquad
Instructor: \qquad
13.(13 pts.)

The table below shows what is known about a function f which is defined and continuous on the interval $[-1,3]$. The table gives the values (or the sign) of f, f^{\prime} and $f^{\prime \prime}$ at the points given (D.N.E indicates that the derivative does not exist at that point) and tells whether f^{\prime} and $f^{\prime \prime}$ are positive or negative on the intervals given.

x	-1	$(-1,0)$	0	$(0,1)$	1	$(1,2)$	2	$(2,3)$	3
$f(x)$	2		1		0		1		-0.5
$f^{\prime}(x)$		<0		<0	0	>0	D.N.E.	<0	
$f^{\prime \prime}(x)$		<0		>0	>0	>0		>0	

Sketch the graph of a function $f(x)$ satisfying the above data.

Name:
Instructor:
14.(3 pts.) You will earn 3 points if your instructor can read your name easily on the front page of the exam and you mark the answer boxes with an X (as opposed to a circle or any other mark).

Name: \qquad
Instructor: ANSWERS
Math 10550, Exam 2 October 16, 2014.

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	($)$	(d)	(e)
2. (a)	(b)	($)$	(d)	(e)
3. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
4. ($)$	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	($)$	(e)
6. (a)	(b)	(c)	(d)	($)$
7. ()	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	($)$	(e)
9. ($)^{\text {) }}$	(b)	(c)	(d)	(e)
10. (a)	($)$	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice__	
11.	
12.	
13.	
14.	
Total	\square

